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ABSTRACT 

The objective of this report is the presentation of an analytical- 

stochastic model capable of predicting relevant statistical scattering 

features of electromagnetic waves propagating within vegetated environ- 

ments.     The propagation phenomena are described by formulating the 

scattering associated with random permittivity fluctuations superimposed 

on a lossy deterministic background slab.     The mean backscattered power, 

its variance and one-point distribution are calculated.     The spectral 

characteristics of clutter from windblown foliage are investigated using 

two models; one presuming the velocity field to constitute a multi-variate 

normal process and another presuming the scatterer's motion to be quas - 

harmonic over limited time segments. 

Accepted for the Air Force 
Joseph R.   Waterman,   Lt.   Col.,   USAF 
Chief,   Lincoln Laboratory Project Office 
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CLUTTER RETURN FROM VEGETATED AREAS 

A.     INTRODUCTION 

The objective of this report is the presentation of an 

analytical-stochastic model capable of predicting relevant statis- 

tical scattering features of EM waves propagating within vegetal 

environments.  Of interest are such features as the spectral 

content of the clutter return as well as the received power (and 

related statistics) from gated range-cells.  Other pertinent wave 

features not discussed but which can be pursued within the frar 

work of the suggested model are mentioned at the end of this 

section. 

The forest constitutes a complicated transmission medium. 

Its characterizing parameters (i.e., permittivity and conductivity) 

are random functions of space and time.  Furthermore, its intei*- 

faces, particularly the air-vegetation interface which may play a 

major role in the transmission process (e.g., through its support 

of a "lateral" wave) are "rough".  Further discussion of the 

stochastic character of the interfaces and the corresponding 

effects on the EM radiation is omitted at present.  This by no 

means implies lack of significance.  It is the surface roughne$s 

which conceivably causes the deterioration of the "lateral" wave. 

The forest constitutes an ensemble of various scattering 

constituents.  Fortunately, not all influence the EM characteris- 

tics in the same manner.  The outstanding difference between 



these scatterers is their physical dimension compared to the 

wavelength of the incident radiation. 

Small-scale scatterers are characterized by small scattering 

cross-section.  Their relative contributions to the scattered 

field (the elementary scattering event is virtually isotropic) 

are expected to be small.  The presence of small-scale scatterers, 

however, is extremely significant because of the modifications 

they impose upon the effective propagation features of both the 

incident as well as the scattered radiation.  Multiple-scattering 

events experienced by either the incident wave or by the wave 

back-scattered to the receiving antenna have a two-fold effectv   J\ 

(a) Scattering losses (additional to the ever-present 

absorption losses) reduce the efficiency of the channel 

and must be properly accounted for.  The medium which 

effectively describes the propagation of the mean wave 

predicts losses which may become considerably higher than 

those anticipated from absorption alone. 

(b) In addition to the scattering losses the mean wave 

experiences an effective slowdown.  The medium seems 

denser than that expected in the absence of scattering. 

The small-scale scattering effects indicated above are 

accounted for by a proper choice of the effective background 

permittivity and conductivity.  The relative contributions of 

small-scale scatterers to the scattered-wave may not be small 



throughout the contributing spectrum.  Specifically, attention 

must be paid to the spectral "tail" region to which small-scale 

scatterers may, despite their small cross section, contribute 

significantly since they may attain relatively high velocities. 

The effects of scattering centers contributing to the bulk 

of the back-scattered energy cannot be accounted for in an analo- 

gously simple manner since the scattering is controlled by the 

random deviations of the (complex) permittivity function from the 

background, a more accurate description of the space-time medium 

fluctuations is called for.  First order scattering theories high- 

light the need for more detailed knowledge; that contained in the 

space-time auto and cross correlation functions of the pertinent 

electromagnetic parameters. 

At relatively low frequencies (say below 100 MHz) virtually 

all the forest constituents are in the small-scale category.  The 

effect of the scattering on the propagation characteristics of the 

mean wave is totally describable by an effective background selec- 

tion leading to the familiar deterministic "forest-slab" model 

The scattered wave is both small in magnitude and inconsequential 

to applications at these frequencies and thus has been totally I 

ignored. As the frequency rises to the range which includes UHF 

and L-band, the scattered wave can no longer be ignored.  The 

small-scale scattering constituents cannot be ignored either; 

their determination of the background slab (over which the random 

(4,5) 



fluctuations are to be superimposed) is of utmost importance. 

At still higher frequencies (say X-band and beyond) most scat- 

terers appear to be large-scale.  Coherent background effects no 

longer exist and all scattering centers must be regarded as 

belonging to the "fluctuation" spectrum. 

Figure 1 describes the physical configuration consistently 

with previously presented arguments.  The medium is modeled as a 

slab of average height h (which may not coincide with the average 

height concluded from visual observations); a complex background 

permittivity  e „  = e„ which is presumed constant (more precise 

models may necessitate more complicated plan-stratified or possibly 

anisotropic backgrounds); and permittivity fluctuations (e (r,t) ) 

which are random functions of space and time with supposedly 

known two-point space-time correlation functions.  e~ is neces- 

sarily complex accounting for absorption as well as scattering 

losses.  The ground is taken to be a perfect reflector (a 

reasonable assumption for horizontally polarized waves).  As 

mentioned above, the random nature of both vegetation-air and 

vegetation-ground interfaces is disregarded at present.  The 

forthcoming analysis presumes the dominance of geometric-optical 

contributions to both the incident as well as the backscattered 

radiation.  This is not the case under a wide variety of circum- 

stances such as (a) antenna within the vegetation (or within few 

wavelengths above it), (b) range cell in the shadow region of the 



geometric-optical refracted wave due to hilly terrain, etc.  It 

can be assumed that the coupling between the interfaces is small 

(a reasonable assumption in view of the prevailing scattering and 

absorption losses).  This allows one to treat the forest as a 

half-space, with ground effects accounted for as the single and 

double reflections illustrated in Figs. 8a, b.  These ground 

reflections render the determination of the range-cell's location 

uncertain.  However, the introduced errors are expected to be 

minimal in the present context. 

It is anticipated that the solution of the random scattering 

problem (i.e., the determination of the analytical relations 

between the presumably known forest parameters and the pertinent 

wave statistics) via "distorted wave Born approximation" would 

provide acceptable accuracy under the prevailing circumstances. 

Contributions to the crossed polarized wave do, in general, 

stem from both coherent background effects (reflection, refraction 

and diffraction) as well as random multiple-scattering events 

(first order description of the cross polarized field is provided 

by the second order Born approximation^ ').  Since it is a single- 

scatter mechanism which is believed to dominate, depolarization 

due to random scattering is presumably insignificant.  Coherent 

refraction and diffraction (giving rise to a lateral-wave) are 

likely to become major contributors to the crossed-polarized wave. 

However, the rather small discontinuity at the air-forest inter- 



face suggests that the overall effect is small.  This is not to 

say that the original polarization dominates everywhere.  For 

example, near the ground, or at minima occurring due to destructive 

interference of the horizontally polarized wave, the vertical 

crossed-polarized component may dominate locally despite its 

smallness.  The total amplitude of the incident field will be 

small and as a result the backscatter from these spatial regions 

is negligible. 

Section B describes the physical configuration and formu- 

lates the scattering problem associated with the random permit- 

tivity fluctuations superimposed on a lossy deterministic back- 

ground slab.  The background problem is discussed in Section C, 

starting from the exact field solutions.  Asymptotic, geometric- 

optical forms are derived, tailored to the specific parameter 

range; relevant to the prevailing experimental conditions. 

Conditions, restricting the validity of the geometric-optical filters 

are discussed and a comparison with possible "lateral"-wave con- 

tributions is given.  In Section D (and in the Appendix) we derive 

expressions describing the scattered field consistently with the 

distorted wave Born approximation and the observations made in 

Sections A and B.  The mean received power, its variance and one- 

point distribution as well as the field's temporal correlation 

associated with the clutter return are calculated.  The clutter's 

spectral characteristics are investigated in Section E.  Two 



models, one presuming the velocity field to constitute a multi- 

variate normal process and another presuming the scatterer's 

motion to be quasi-harmonic over limited time segments are 

discussed. 

Certain relevant aspects not presented in this report 

but which can be readily described within the general framework 

of the proposed model are mentioned below: 

(a) Situations in which the geometric-optical field 

no longer constitutes a major contribution.  This is 

the case whenever the transmitting and/or receiving 

antennas are situated within (or slightly above) the 

vegetation.  A similar situation arises whenever the 

range-cell is situated in the shadow region of the 

refracted wave, owing, say, to hilly terrain.  The 

"lateral" wave constitutes the major channel. 

(b) Distribution laws of the scattered field. 

Amplitude (power) fluctuations and related two- 

point statistics associated with target and clutter 

returns. 

(c) Effects of vegetation (random slab) on target 

spectrum. 

(d) Smoothing effects owing to finite aperture of the 

receiving antenna and/or finite extent the target. 



(e) Generalization to bi-static situations. 

(f) Pulse-shape distortion and the resulting range- 

cell diffusion. 

The analytical details of the model are, at times, tailored 

to the specific parameter range of interest.  Many of these 

restrictions may be waived if the need arises under varying 

circumstances. 

B.     FORMULATION OF THE PROBLEM 

The pertinent physical configuration is described in 

Fig. 1.  Heuristic arguments in support of the random slab model 

have been presented in a previous interim report and the 

Introduction above.  It should be noted that the permittivity 

e« + e(r , t) is generally complex reflecting absorption as well 

as scattering losses within the slab region.  Since the 

absorption and more so the random scattering constitute frequency 

sensitive phenomena it could be anticipated that both e« and 

e(r , t) (and its characterizing statistics) are frequency- 

dependent (dispersive) as well.  Also, the assumption of perfect 

ground conductivity while generally valid for the horizontal 

polarization is unsatisfactory for the vertical polarization. 

The propagation and scattering characteristics of the EM 

waves are determined by Maxwell's equations: 



«g. «Tg. Mg 

,   Z 

€1 = €0« ^0 /, 

2 ■> 

h (average height) 

«2 +€(r, t), ^i2 =/x0 

<c(r, t)> = 0 

X. 
/////// /y / / / / / / /j*/ / /, 

PERFECTLY   CONDUCTING GROUND 

Fig.   1.     Physical configuration. 



'xHr£iir + ^i     ' * H2 = e2 ^ + ^ (« i2) + J2    (i) 

/\ 

v x h  " " ^o "3F     v x E2 = - ^o TT (2> 

together with the continuity conditions 

Elt - E2t ,   Hlt - H2t (3) 

at the interface and a causality condition which in the steady- 

state case becomes the radiation-condition at r-* » . 

It is presumed that the temporal medium variations, 

characterized by the correlation time T  , are slow compared to 

these of the wave, i.e., uu T >) 1 where uu is the angular o c o 
frequency of the presumedly monochromatic transmitter. 

Let, 

Ex (r,t) = Re^ (r,t) e^] 
2 2 

(4) 

Hx (r,t) = Re[Hx (r,t) e^otJ (5) 

Jx (r,t) = Re[jx (r) ejuü0t] (6) 

10 



(Note:  since the source is taken to be monochromatic J-, 2 

is time independent.)  The substitution of Eqs. (4-6) into 

Maxwell's equations (1,2) results in: 

v x £l - -j%u0 (1+3^ h) äi + ±1  « 

V x äl = j Vl (l+3^  ^) £1 

' * % - J«0 (l + J^ &) [«2 £2 
+ e £2] + J2 (r) 

(7) 

(8) 

(9) 

(10) 

from which the following vector wave equations are readily derived: 

2 
7 x V x Ex -kf (l + jJL £) £l - j Vo 4 

E2 -^2 (x + 3% ^/  ^2 " J Vo i2 
+ %^o (X + 3^ V X V X 

(11) 

at ■)(.%) 

(12) 

2   2 where   k-. - w u  e^ 

Terms associated with the slow temporal derivative may 

be safely omitted due to the smallness of (uu T ]   « —^ < ( 1 
y \oc)        % 

(here Auu denotes  the  frequency deviation of the wave from   uu  ) . 

11 



9   ?S 
For example, comparing the terms | e E~ I with \-r— -^  (e £2) I one 

o 
has 

'it:^ (e ^2>i / i«s2« ■ ijt- <ff £2 
+ e ^>i/ie £2i - 

(«uO-1 + £a<< 1 (13) O C      U)0 

consequently, we may take 

and equations (11, 12) reduce to 

2 v x V x E-L - k-j^ E-L = -JwQU0 J-L (14) 

v x v x E2 - k^ E2 = "J%^0 I2 
+ Vo e -2  > e = e (£>t)  (15) 

in which time appears as a parameter. 

Let G-. 9 denote the Dyadic Green's function defined by 

the equations, 

V x V x G1 - k^ G-L = 0 z>0 (16) 

v x V x G0 - k^ G0 = 15 (r-r')  -h<z<0 (17) 

the radiation condition at infinite and the appropriate 

continuity conditions at z = 0.  Here, I denotes the unit dyadic. 

12 



Let  E<0>  = E1)2(e=0)     and  E1>2S  = E12  -E<°>  denote 

the unperturbed (background) and the scattered waves, respectively. 

From the basic definitions and Eqs. (14, 15) one obtains: 

v  x  V  x  Els   -  k{  Els   =  0 

v x VxE2)S   -kj  E2s  = «£ nQ  e(r,t)   E2 

which may via Eqs. (16, 17) be converted to the convenient 

integral forms 

(18) 

(19) 

2 
En  = u> u —Is   o o 

^2s ■ \ ' 

f d3 rx «(r^t) Gx (r, rx) ' E2 (r_x,t) 

s 

0fv  d
3 rx t(rlft) G2 (r, £l) ■ E2 (rpt) 

(20) 

(21) 

Equations (20,21) constitute integral equations which generally 

cannot be solved.  The simplest applicable approximation to 

these equations is the so called "distorted wave Born approxima- 

tion" in accordance with which one replaces Ey   (r-, ,t) in the 

integrands of Eqs. (20,21) with E^ ' (£-,,t).  The quantities 

E£  and G-. 2 
are associated with the background problem which 

is discussed in the next section.  It should be noted that the 

validity range of the Born approximation (in absence of any 

wave distorting background) has been thoroughly investigated 

(e.g., ref. (2)) and further elaboration seems redundant. 

13 



C.     THE BACKGROUND PROBLEM (EVALUATION OF G AND E^0') 

For the sake of simplicity the ground effects are 

presently ignored; they will, however, be added separately at 

the end of this section.  The problem to be considered is that 

of a dielectric half-space excited by an arbitrary dipole.  It 

is assumed for definiteness that the source is located in region 

2 (the half-space z>0).  To obtain solutions applicable for a 

source situated in region 1, one simply replaces 1 by 2, 2 by 1 

and z by -z.  The excitation properties of a dielectric half- 

space by a dipole are well understood, extensively elaborated, 

upon in the literature and are regarded as textbook material. 

Despite their simplicity, no exact closed-form solutions are 

available and one must resort to an asymptotic description which 

is readily interpretable in geometric-optical terms. 

1.     The Exact Solution. 

The satisfaction of the equations 

V x E}0) = jwoU0 g»)    V x E2
(0) = -ju)0u0 H2

(0) (22) 

v x H{0) = JUU^-L E{0)    v x H2
(0) = j wQe2 E2 + J2 6 (r - r') 

with the continuity conditions 

iff" 1$? • »ff = HW at z=0 (23) 

and the radiation condition at infinity is required. 

14 



The boundary value problem is conveniently describable by 

the vector potential 

1 

fil = 7 x -1 
2                   2 2 

-1UÜ   u J   o^o 
1     4-   7    7 

kl 
2 

2 

with A, obeying the reduced wave equation: 

2 

(v2 + k2) Aj_ = 0 

(V2 + k2) A2 = -J2 6(r - r') 

Assume the following plane-wave representation. 

A, (r) ±-j   /d2 kt A, 
, (2w)2  J t     \ 

(i^.z) .-JJSe •  (£.-£.') 

(24) 

(25) 

(26) 

(27) 

hence 

& + Xl]-1 = ° dz 

,2 
pT + *2    ^2 = "^2   6(z  "  z,)'   xl = kl  " kt 

2 2 

(28) 

(29) 

where,  £ = r  -  z    z   »£,'"£.'   ~z-oz'   and Jit denotes the transver —o 

wavevector. 

A-, are of the form 

15 
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^.L-J*2(^+r   eJx2 (■+«')]. AQ (30) 

'1   = T  • A        e-Jxlz + J"2Z' (31) —1      ~      —o 

where 

r = FH [it - £ Äo St]   +rEU^o  -^   So*t] 02) 

I = TH [it + ^ 5o St] + TE [^ ^ - ^ -o kt] 03) 

consistently with the continuity conditions at z = 0, and 

Äo ■ 2S1 (34) 

consistently with the prescribed dipole excitation. I  represents 

the transverse dyadic 

at - I - So I«, (35) 

TH (Tu) and T£ (T„) denote the reflection (transmission) coefficients 

associated with the H and E-mode constituents, respectively. 

They are given by: 

'  — »- —   —   "»w —-w   W..W — _w _«.-...-. ,    — -ww 

r    
x2 " *1 

"  H  x2 + x±     ' 

2x9 
T  -    ■ . (36) 

* 

•"■H  x2 + xx 

16 



—1 1  
K-|   X r\       T  Kn  X -i 

T„ = 
2k^ x2 

~~2 2  
K-i  A. rt ~t" K-«-) X-• 

(37) 

It is customary, although for some purposes, inconvenient, 

to make a transition from the plane-wave representation (27) 

which involves a two-fold integration to a cylindrical represen- 

tation involving a single integral.  Omitting intermediate 

algebraic steps, one obtains: 

00 

A2(r, «')-jjj   f^^42)   (el£-£'l)[le-J*2lz-' 
• 00 

+ r    (g)eJ*2(Z+z')].i2+!£   ,JdpiHflö) 

x (3|P-P'|) r2 (B) e^a^-^') 

-00 

• i2 (38) 

A^r.r')  = jlj-   J dS ^H0<2>   (ß|z-z'|) ^   (B)  .-J*l*+J*2*'   .  j. 

+ 
z 
—o yde AHQ(2)   (e|p-£'|) T2  (e) 

x e-j*]z+j*2z' 
*2 

where  Vfc  -  V  - z^ ^-    denotes  the  transverse gradient,   3=|k   |   and 

T1,   r^,   T2 and T^ are defined by the relations: 

17 
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Il - TH It + TE ^ ^ 

El = rH It + rE ^  £o 

71  (Hi T H " *2 V 

Tr,     =  " 77 <rH + rE> 

(40) 

(41) 

(42) 

(43) 

The above quantities are related to the previously defined 

T and T via 

I - ü + r2 ^ k, 

T - l! + T2 ^ kt 

Equations (38, 39) cannot be further reduced and as 

expected the resort to approximation is unavoidable. 

2.    The Asymptotic Evaluation.  The Geometric-Optical 
Contribution. 

We first replace H *2^ (ß|£-\ß/|) in Eqs. (38, 39) by its 

asymptotic values 

H0
(2)«4 •"*"**  [l*> 4>] 

resulting in 

A2   (r,  r')~ 

(44) 

(45) 

. IT 

e Jy 
"grrj V 

+ z     p 
-O   -K) 

+00 

/ 

TT|£-£    | 

3/2 
dß £ 

-j 

— CO 

I e"JPl + r, e"jP2 

r2   <»     e'jP2 •  12                     V 

18 



. TT 

J2T 
Ax (r, r')~ f^ fi^p 

+• 
+ z  p  /■ dp 

+00 

i 
,3/2 

dß 57" II <*> e 
"JP3 

T2 (8) e -JP3 ±2 (47) 

where, 

Px (3) = ß|p-£'l + x2 |z-z'| (48) 

P2 (ß) " ß|P-£'l * H2(Z40 (49) 

P3 (ß) - ßlßVI + H-L z-x2z' (50) 

£.-£' 
and the asymptotic relation v ~ -j ßp  (o = -r-——r-r is a unit 

vector in the £-£' direction) has been utilized. 

The major asymptotic contributions to the ß-integrals (k the 

large parameter) come either from the vicinity of the respective 

saddle-points (geometric optical contributions) or (within some 

restrictive spatial regions) from the appropriate branch-points 

(lateral waves).  Situations under which lateral-wave contributions 

are expected to dominate the channel (see Introduction) are omitted 

and will be reported separately.  Their relative significance, 

however, is discussed at the end of this Section. 

a)    The Saddle-Point Contributions 

Consider the integral 

-JP(3) I = 
/ 

dß F(ß) e (51) 

19 



assuming the existence of a single first order saddle-point one 

obtains 

,     r~^~ £,B, /
3P(v -%sgn (p,,(ß.)) ,52, XcP    V iP"<Ps>\       f(V  e (52) 

where the saddle-point, ß  is determined by the saddle-point s 

condition 

P'(SS) = 0 (53) 

and the prime denotes the derivative with respect to the argument. 

One can readily apply the asymptotic form (52) to Eqs. (46-47). 

The results are easily interpretable in geometric-optical terms 

and could alternatively be derived via a direct use of geometric- 

optical arguments.  These are, 

-jk2(Li  + Lr) 

^   = 6WLi + Lr) [ll   (ßs>   + ^ *o   0s  r2   <ßs>J      *  ±2       (55) 
-j(k2Li + kxLt) 

'    - H 
^sp 
A(t)   =e 

Li + klLt>     pa"   r -, 
^TTT  i^T   [ll   (0s>  + -o 2o  ßs  T2 (0S)J    *   J; ■2 

56) 

The length segments L., L , and L are shown in Figures (2, 3); 

da and da denote differential cross sections of the transmitted o 

ray tube at the observation point and at the interface, respectively: 

.2 

|-('4?)I'*?S'' 

20 

(57) 



18-6-13898 

OBSERVATION 
POINT 

Fig.   2.    The geometric  - optical reflected wave. 

i {I 118-6-13899| 

dtf     . 

duo 

«2 

/U 

Fig.   3.    The geometric - optical transmitted wave. 
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where the relationship 

ß    = k0  sin  9.   = k,   sin  9 (58) 
s I l        1 t 

has been used, and from Eqs. (36,37) 

k, cos 9i - k2 cos 9 2 k^  cos 9^^ 
rE ^ßs^ = k±  cos 9i + k2 cos 9^  

TE ^s^ = k±  cos 9± + k2 cos et 

(59) 

k2  cos   9.   -  k,   cos   9 2  k2  cos   0^ 
rH   ^s^   = k2 cos   9^^ + kx cos   9t» T1T  s'   " k2 cos   9i + kx cos   0 

(60) 

The geometric-optical electric-field  is  derived via Eq.   (24). 

Neglecting  rapidly decaying  field constituents  one  obtains  the 

incident  electric   field. 

-jk2Li 

Itp    ~ -J"o  ^o VT-    « " ^A,)      *  ^2 <61> 

where 

L " r' 
v~ -jvPl  (Bs)  = -jk2 ro,    ^ .   |£ . £, , (62) 

the reflected electric-field, 

x\ 
-jk2   (L.   + Lr) 

^P    ~ "jU'o  ^o    4n   (Lt + Lr) (l-%&>   '  ■ :  <P8)   ' I2 (63) 

where 

. £-£'  + z     (z+z') 
v~ jvPo   (ße)   =  -jk0  r   ,     r    = -, /  _,_ ~"°   ,   ,    IM (64) J     2vs/ J   2 —o'     —o        l£"£    + z     (z+z  J| v     ' -o 

22 



/N 

r (ß8) = TH (ßs)  It + rE  (Bs) ^z 
*2  (P8) 

—o-o 

X[rH   (ßs>  + rE   <*s>]     Vo (65) 

and finally the transmitted electric field, 

-j (k^.+k-^)  _ 
E(t) 
-sp J o o 4n L. V /v 

-ar  <x - Sä) ' W i2 

where 

-JVP3 (ß8) = "Jkl £o» S, £o sin 0_ + z cos 9, 

(66) 

(67) 

and 

^ 
I (es> = TH <Ps> It + TE <Ps> ^ —o—o 

+ ^[K1  <V  TH  <es)   - *2   (es> TE  <%>]   2o£o (68) 

/X 
r , r and r geometrically represent unit vectors along the 

incident, reflected and refracted rays.  The dyadics 1 - r r , 

1 - rr and 1 - FF, represent transverse-projection operators 

with respect to the corresponding rays. 

With the geometric-optical properties of the refracted 

wave (66) available, the desired information concerning both the 

incident wave and the dyadic Green's function is readily deduced. 

For reasons of convenience, notational changes are introduced as 

indicated in Figs. (4, 5).  The geometric-optical Green's function 
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18-00-7202(1) 

Fig.   4.    Incident wave. 

18-DO-7202(2) 

Fig.   5.    Green's function. 
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da <2) -j (k1L1-Hc2L2)  / 

ii cr,^) ~ £—^—y 
-J (klL]L^2L2)  f^lf 

£(0) (r,) ~ -JVo S 5__ y -o^ (Jt . ^^ 

and the incident wave (excited by an arbitrary dipole) are given by: 

(It - S^r^)  • T1; (69) 

where 

M2 

121 ' ^1 

TH12) h  +  TE12) 
„  „(12) .    (12) 
*1 XH     K2 TE   , „ 
 * ^<A> 

(70) 

hi T<21> It + T<
21> zz  - H    ~t    E    —o—O 

(21) _    (21) 
2 XH     *1 XE 

5o£o 

and 

T(12,21) 
2K2,1    T(12,21) 

> X
E 

2V *2,1  
kl "2 + k2 *1 

s 

(71) 

s 

(72) 

(73) 

The radius vectors r and r-, denote the location of the source 

(generating the incident wave) and the scattering point, respectively. 

The ray-tube cross section ratios are now given by: 

da' 

da 

(1'2)   L   , L2.1 %A   (r   , L2.1 k1.2 COS2Q
1,2 (74) 

Further simplifying features which stem from the presumed 

smallness of the angle 6 = 2- - 6-, , are discussed below. 
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Specifically, the validity of the inequality 

sin2 6«^« 1 - TI"
2
 « 1 (75) 

is assumed.  Here, r\  = k«/k-, denotes the index of refraction of 

the half-space z < 0 .  (Typically, r\  « 1.05 and (75) becomes 

6 « 0.3 radians « 17—, often a reasonable restriction for ground 

radars).  Under the restriction (75) one may readily verify that 

cos290 I *T2   ™e2   A 1 rT2 
  2 = 1 - r) -cos I  m  1 - TJ  >;> x r?6) 

cos 9-,      sin 6      sin 6 

consequently, the area-mappings (74) simplify to: 

, (1)      L9  k, 

%T - i + r ir * l <77> 
o 

da(2)       Lj_    k2    cos282     /        U     k2\      /Ll    k2    cos   92\
2 

where the last of the approximate forms in Eqs. (77,78) presumed 

the largeness of L-. with respect to L«.  More caution must be 

exercised in approximating the phase function: 

P = k±  L±  + k2 L2 (79) 

The following geometrical identities hold: 

I£-£■!_ I = Lx sin 01 + L2 sin 92 , £ - r - zz^, P^^-z^ (80) 
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z = L-, cos 9-j (81) 

-z- L2 cos 9« (82) 

de«  k.. cos e1 
From Eq. (76) it follows that  gy - £—cos Q 

<  1> hence, for 

large |£-£i I (small 6) the angle 9« stays virtually constant 

approaching the critical angle of refraction: 

It-, 

2  k0   11 R2 

It follows that: 

-z-, 
L0 « 

" Ji - n-2 

(83) 

(84) 

To determine L, we substitute Eq. (81) into (80) resulting in 

|£-£ll  =   (Lx + L2 ^)  sin  9l -  (4 + Lj £i)   [1  -   (^)2] 
1/2 

upon expansion of the square root one obtains 

,2 
klLl * kl I £."£■! ' 1 + i(q) +l(^) + .. . q L2 

(85) 

(86) 

Neglegence of the fourth power contribution to the phase function 

is justified subject to the constraint 

kJp-p,| (IT; )  « 1 (87) 

which is an acceptable assumption under the prevailing 

-3, circumstances.  (Typically, at UHF:  k^ I £-£]_ I (j;-) < 0 (10 J) . 
1 
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From Eqs. (85,87) it follows that 
2 

4L2 "A 4^> 
and presuming 

(88) 

1 k2 L2   ( z }    << ! (89) 

(once again a reasonable assumption under typical conditions  at 

UHF: 

1       z z       -2 x- k2 L2 (T—) ^ 0 (10  ) one readily solves the resulting 

quadratic equation for L-. : 

'1 " 2 U^i 1 +V1 + 2z' 

['^i-^r 
l£-£l ZÄ 1 + 

2['**i' "xl 
(90) 

The square-root expansion in (90) brings about a constraint 

already imposed by (87). 
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We  finally have 

4 = I*-*i - -#+i 
I £-£].! + 

TT " I P.-P.11 ~ ~ 

+ 2  "[FIT (91) 

The last form presumes the smallness of the term -s-k-. 
z2L, 

l£.-£.l 
rr 

a restriction equivalent to (89). The phase function is given by 

*i [1^11+ i TFi^r] - M1 - ^'" zi P « k. 

n by: 

(92) 

The last result is simply interpretable as illustrated in Fig„ 6. 

Equation (79) may be rewritten as: 

P = klA/l^-.^ |2 + z2 + kx  Lx -Vl£-£il
2 + z2 + k2 L2 (93) 

The approximation (92) amounts to replacing the bracketed term 

by -L« sin 0^ (see Fig. 6) and to the subsequent expansion of 

the square root, retaining the two leading terms.  Equation (92) 

follows directly. 
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Fig.   6.    Interpretation of the phase function. 
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The polarization properties of the incident wave and the 

Green's functions are determined by the operators (1 - r «Lo) * ^21 

and (1 - r^iloi) ' Ii2 (see Eqs* (69-72)), respectively.  These 

operators simplify substantially in view of (75).  One has, 

<i-ioAi> -12 = [i " £oPo 
Sin2 9i "^n^ COs2 ?1    ^^o^o i   v—o—o      —o—oJ 

sin  ex cos   ej   •  T12  *  [l  - ^    •  T12  « TjJ12)   (l^P^) 

+ T^12>   [z^  -  z^ cot   e2] (94) 

where terms of order cos 0-, = sin 6«6 have been omitted.  The 

depolarization may also be neglected owing to the smallness oi 

cot 02 « Vrf-1 « 1 

Similarly, 

(i - Eo2£o2
) ^21 =  [i-£o£o si^e^z^ cos262-(£ozo + z^) 

sin e2 cos e„ 

* 421) w. 

]-x 
• ^ TH21) <it " W 

(95) 

where once again the smallness of the parameters 5 and l-r\    was 

presumed.  With restriction (76) borne in mind, the following 

simplified forms of the transmission coefficients results: 

(12) _ „,(12) M  2 LH « TT 

31 

(96) 



cos e. (21) ., 1   (21) :J 2 — -1 _   2  z (9?) T
H       7 T

E       T, cos e2   7^=p q <97> 

The substitution of Eqs. (77,78,92,96,97) into Eqs. (69,70), 

results in the following simplified geometric-optical expressions: 

- Vr|2-l' Zl ! -aL2 (98) 

and 

+ j — VTI2-I' Z-J -aL2 (99) 
l£-£ll 

where a decay term exp (-aL«) has been written explicitly (not 

as the imaginary part of k2) , and L-, 2 
are given by Eqs. (84,91). 

(The last two terms in Eq. (91) may be totally ignored in the 

amplitude factor of Eq. (99).) 

For a horizontal dipole, we have 

(i - 2^)   ' Ii = 2oC2o • ±±  = £o % - 2o Jl cos *       (10°) 

(see Fig. 7) 

The incident field may be further generalized if one cares 

to account for the finite aperture of the antenna.  Equation (99) 
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18-00-7204(1) 

x -* 

AV| = (AS,)h 

CENTER 
BEAM 

dw// 
RANGE CELI j-J   /-- 

Fig.   7.     Top view. 
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may be rewritten as: 

Zi0)<£i)~Tto)   ,-9
2Z,   2 1 Vn2-l L£ 

.-jki l£-£l + *• 2 n=ir -J7^iZl -aL„ 

2o 

(101) 

where F(cp) is simply related to the incident field as follows: 

F(«p) = F(9,cp)9=0 

.(D . ,<.,„> *^1 
T- "So 

(102) 

(103) 

From basic definition of the antenna gain (ignoring medium 

effects) via, 

,   ,2 q(i)     , 1        , 
g(9)Cp),!^r_=2J^iFle^li 

t Mo    rt 

It follows from Eqs. (102, 103, 104) that 

lF(<e)l2 «&  7? pt[s(9.*)le=o 

(104) 

(105) 

where P denotes the total power emitted from the antenna.  It 

should be recalled that the antenna's finite aperture not only 

plays a role by controlling the incident radiation, but also by 

receiving the backscattered signal.  The necessary related 

modifications are described in the next section. 
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b.    Ground Effects 

The presence of the ground, so far totally ignored, 

can be accounted for without difficulty.  For the horizontally 

polarized component the ground could, quite accurately, be 

modeled as a perfectly reflecting surface.  Furthermore, multiple 

reflections between the two interfaces may, safely, be neglected 

owing to the lossy character of the vegetation slab.  A single 

ground reflection of either the incident wave or the Green's 

function (or both) is expected to constitute an adequate 

description of the phenomenon.  Geometric-optical contributions 

to be dealt with are illustrated in Figs. (8a and 8b).  The 

ground reflected constituents may be written by inspection from 

Eqs. (98,99, or 101) by a proper phase inversion (for 

horizontal polarization) and by replacing -z-^ with 2h + z^, 

We have, 

*at-£o£o> 
Gni,(r,r,) p—.   ,   A 

1 2TWTI2-1 Lf ^1R' 

,-Jkj^lP-Pi' 
l£-£l 

  a(2h + 2l) 
+ ST-i (2h + Zl)J - jx _ ^_2,' 

(Note:  the z z  element does not experience a phase reversal 

but it plays no significant role in future calculations.) 

Similarly, 

(106) 
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(b) 

Fig.   8.    Geometric - optical contributions. 
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40) fei>--So F(*> ——— e"jkl [l£~£i1 +* 
2 z 

Tl -   ^ 
l£-£l 

/-?— a(2h -I- z.) 
W<-1 (2h + Zl)  - X 

(107) 

c.     Comparison with the Lateral Wave Contribution 

Under certain conditions the geometric-optical field 

(Eqs. (98,99)) does not represent an adequate description of the 

incident radiation or the Green function.  Specifically, as the 

radiating source or the point of observation approach the 

interface, i.e., as z-» 0, the geometric-optical field vanishes 

and clearly, it no longer constitutes the major filed contribution. 

Whenever the transmitting and/or receiving antennas are situated 

in the proximity of or below the (air-vegetation) interface, it 

is a diffracted contribution, the lateral wave, which dominates. 

While work has been done to account for such situations, its report 

is deferred for the future.  Under the conditions stated in (75) 

the dipole-excited lateral wave is given approximately by: 
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|£.(o)| *-£-       —-——  (108) 
ZTTk^-l,     /j—■|-L3/2 

where LT   denotes the lateral path.     Consequently,   comparison with eq.   (99) 

yields, 

|£ (o)| 
(109*) 

Typically,   for antennas situated several wavelengths above the vegetation 

air interface,   the lateral-wave may be safely neglected. 

D.     THE DISTORTED WAVE BORN APPROXIMATION.   THE RECEIVED 
CLUTTER   POWER (MEAN AND VARIANCE) 

The title "Distorted Wave Born" generally refers to a class of single- 

scattering approximations in which the propagation features of both the in- 

cident wave (on the way to the scattering volume) as well as the scattered 

wave (on its way to the receiver) are modified consistently with a suitably 

defined background (in our case a lossy,   uniform dielectric slab).     In the 

following analysis we refrain from generalizing any of the results beyond 

restrictions applicable for the specific configuration.    Several such generali- 

zations however are within easy reach.     From eq.   (21) together with (98,    101) 

one readily obtains: 

Similar observations were made by T.   Tamir in an ECOM Memorandum 
(Summer 1970) entitled,   "The Electromagnetic Field Radiated Above a 
Forest by an Antenna Embedded in Vegetation". 



2 2 a)     u    z 

Als(i>t)=-v^ 
TT(T1    -DP0      v 

.-J2kl t |P- B.J + 7 

Jd3rl£oF(y)  €(rrt) 

2a z 

U -_Pi I    v^2 ] + 
r-iz, ^T~F 110) 

where L,  has been replaced by p    in the amplitude term (see eq.   91  and 

Fig.   7). 

Let us focus our attention on the scattering contributions from a 

volume A V.  (Fig.   7) such that p   Acp. is large compared to the transverse 

correlation distance (but small enough to obey restrictions (113,   114).   We 

have, 

A_Egi (r, t) 
U)      (i     z 

o     o 

*(TI2 -1) P0
4 

j^r^Fiy)  e(£. + rrt) 

AV. 

.-J2kl[ lp-_ßL-£ll + 7 

2 a z 

J3 
|p-Pi"-ßl 

r\ - 1   zj] + 
1 

^TTr* 
The Taylor expansion 

t-£i-£il«P0-£ol'   Pi+TT" [^i2'(poi" ^i)2]+ • • 

|p-£il= P0. £oi = 
P - £i 

together with the assumptions 
2 
1 max 

'1 
<< 1,   p. = max       dor  p   Acp- r 1 max ) 'o   ^i 

(111) 

112) 

(113) 

k,   P 1   K1 max \   p << 1 114) 
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result in, ? 

2 2 z^ 

TT (T1    -  1) p„ 

y*d3rie(pi + r1,t)eJ2kl^i'-Pl+J2kl^7^Zl + 7==r (115 
AVi 

where it has been furthermore assumed that ^p    and F(cp) stay virtually con- 

stant over the volume of integration (A V.)- 

Before proceeding with the analysis let us  generalize eqs.   (110 and 115) 

to include the ground effects.     We have (via eq.   20), 

£ls(r, tMuQ
2 Mo   /d3r1 e(r_rt) (G^r,   r {) +    G 1R(r,   r^).   (E(o)(r 1) + £(^ (r })) fd\nLvt) 

(116) 

where G,,   G1D, E(o) and E(°J are given in eqs.   (98,    101,   106 and  107). 

Explicitly: 
2 2 

in   |i z 

£ls(£.t>~- 
TT 
^/^^.„.„„..[-.i-^^-^x-,.] 

rj2k1   [IP-  pJ + 4    LP-PJI    " Vrl2- 1     ziJ 
2 cyz1 

(117) ^7.-2 
Tl 

The effects of the perfectly conducting ground are totally contained in the 

bracketed term (to be denoted y(zi)) its replacement by unity leads back to 

eq.   (110).    Analogously to eq.   (1 1 5) one now has, 
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2 2 2 
z 

AEs.(r,t). 
(DUZ 

o   Ho 
,2    n     4 

TT (n -1) PO 

e"jkl   To"   -J2klPo F(cp.)   c^. 

/d^  e(£i + £l, t) y(Zl) .1*1*1 ' Jl +2*1^^71 + 
2 a  z. 

/TT7^ 
AV. 

(118) 

It is important to point out an error introduced in writing eq.   (116).     The 

scattering volume V    is determined (longitudinally) by the radar's gating. 

In eq.   (116) we identify four distinct and readily interpretable terms,   ^ach 

associated with a somewhat different range cell.     The forms  (116-118) totally 

ignore such differences. 

Since the volume AV. has been selected consistently with the requirement 

that p   Acp. be large with respect to the correlation length,   it follows that the 

scattering volume AV. and AV. (j^i) are uncorrelated,   hence 
J 

< A E  . •   A E   . >= < |A E   . I   >6.. —S 1 — S j ^ s 1 I Xj (119) 

where <  > denotes ensemble averaging.     We now compute the field's temporal 

correlation from eq.   (118) 
4     2    4 

ID    p.    z ?  r ^ 
< A Esi(r,t,  ■   AE;.(r.t+T)>=      \     °            g |F(cp.) |    [d   r,   fc 

"   "  -l)   P° *\        AV, 

d   r2 Y(zL) > 

C(r  , r  , T) ej2kl ?-oi '   (£i "£2) + J2kl AZ-\ (zl~z2>+ 
1 c» 

where, 

C(rr r2, T) s < t{r_v t)   c   (£2> t + T) > 

2 0'(z1 + z2) 

^1  - Tf2 

(z2) 

120) 

121) 

is the space-time correlation of the presumedly stationary random process  e. 
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It is convenient to separate the vertical from the horizontal coordinates 

in  eq.   (120) and transform to the center of mass system.     This  results in 

4    2    4 
o po 

<AE.(r, t).A E  .(r, t+T)> =     f   f j- 
o 1 SI Cd .^.Ct C 

TT en -i) p 8 |F(cp.)|  /dzi /"( dz2Y(z1) Y  (z2) 

/2  2«(*! + z2) 
J2k1^Tf- 1   (Zl-zZ)+ 

v^T^ Tl 

j2k!   p   • -  /p >J     1 -t-oi      ü 
. <> 

yv-P r d2^ clyti zv zz, A 
AS.        AS. 

122) 

where _p =  p_,   - £?,  _p   =  -j (_p.  + _p~) and AS.  = p   dAcp..     In the transition from 

eq.   (120) to (122) it has been assumed that the linear dimensions of AS. (i. e. , 

d,   the range cell and p   Acp. are large compared to the transverse correlation 

length.     It has been further assumed that the process  e (r, t) is statistically- 

homogeneous and isotropic in the transverse direction.     The integration over 

d   p is evaluated trivially resulting in AS.,   while integration d   p (for large AS.) 

is  recognized as the Fourier transform of C with respect to p   (i. e.   the trans- 

verse spectral density function) to be denoted by 

--fc(f,   .jiyT)  e+J^-  £d2£ (123) (H,   ZJI  z2> T) = 

Consequently,   eq.   (122)  reduces to 
4     2 4 

0)    p.     d z 2 
<£s.(r,t).   A£8i(r,t+T)>=     °     °        , |F«p.) |    Acp. 

TT      (Tl     -  1)     Po 

o o 

7dzi/d 

-h -h 

dz2 Y(ZJ) Y   (z2)    $   (2kr   z^   z2, T) 

/—ö  2<y(z   +z   ) 
J2k! V T -  1      (zx  - z2) + 

J 1   - T] -2 124) 
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Owing to the presumed transverse isotropy $ becomes an exclusive function of 

ii A i i K =   \H\,   and as is clear from eq.   (1 22) it is the value of $   at H =   12k. p   . | = 2k  , 

which is of interest. 

The mean received power (<P  >) can now be calculated.     From eq.   (105) 

and the presumption of a matched antenna one has, 

<P^>^    [g(«Pi.  6)]6%0<Si>= ^   Al [g(cp., 8)]6WO <|AEs.|
2> (125, 

where <S.>  denotes the mean Poynting vector at the receiving antenna;  inte- 

gration over the pattern yields 
       -> 4      2,4 / ,         v     r     TT 

O TT      (T\     -   1)       n_ \ O /L*l 
g  (cp,  e = o) ticp 

-TT 

o 

fä, Jo /\ 
dz2 7(2^ Y   (z2)  $ (2k 

-h -h 
+ TT 

ptdzTy*dcc g2(cp) 

/—p  2a(z1+z9) 
.     j2k,VTf-l    (Zl-z2) + -      ■i      ^ 

2    2      2 Tl        fdzlfdzZ   Y(Z1) Y   (z2) 

fr(Tf-l)V     <      X 
$   (2k   ,   z       z   ,   T = o) 

-h        -h 

n— 2a(z   +z?) 
j»! T-l    («!- *2 +    # „ (126) 

Equation (126) may be further simplified if one is willing to except the assump- 

tions that the medium is statistically homogeneous in z (i. e. ,   $   = $ (2k.., z. -z?, T)), 

that the corresponding correlation length is  small compared to the forest's 

effective height (h) and that ground effects are negligible.    Arguments analogous 

to these used for the transverse domain lead to: 
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{/ 2 ah - 2 a h 
dhz     /dcp g  (cp) sinh 

^ 1      71 M.   Tl \T2. 
<P  > « P 2 

L"2'—2 "V     27^  e $ (2k     2k      T| " 1» T= o) 
r l      € ^ \^ (Tl   -1)  p * l 1 

° ° / Zl (127) 

where, 
+» /—2— A 

t (2k1,2k1 /^77"   T=O)^    /"dz   ej2kl     ^  -1   Z f(2kr^, T = 0),    ^=zfz2 

.00 

It should be pointed out that the assumptions allowing the transition from eq. 

(126) to eq.   (127) may be seriously challenged.    However,   the ensuing sim- 

plifications are substantial indeed. 

Equation (127) indicates that the mean received power decreases as the 

seventh power of the range.     Experimental verification of this dependence 

is demonstrated in Fig.   9 which is a plot of received clutter power as a 

function of range at UHF for a uniform pine forest. 

The scattered field given in eq.   (117) or (118) constitutes  (via the central 

limit theorem) a normal process provided that V    (or AV.),   the scattering 
s 1 

volume,   is dimensionally large in comparison with the correlation distance 

characterizing  e(r, t).     It can be shown (see Appendix) that the processes 

E.   = R   (AE   .) and E~ = Im(AE   .) are normally distributed with equal variance 
—1 e    —si' —2 v  —si 7 ^ 

2 
(to be denoted by    QJ and are uncorrelated.     From which it follows that the 

field's amplitude (A.) and phase are describable by Rayleigh and uniform 

distributions,   respectively.     Consequently (see Appendix), 

Var [A2] =   < [A2 -   <A2>]2 > = <A2>2 
L
   l J L   l l     J l 

or 

Var  [P   ] =  < [P    - <P   >]2   >=<P   >2 
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Fig.   9.     Clutter power vs range. 
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where <P  >,   the mean power,   is given in equations  (126) or (127). 

All information concerning the field's temporal correlation or its  spectrum 

is contained in the normalized function. 

o o 

CE(T) = M    fdzY   fdz2 y(zx) v*(z2)$ (2kr *yZr T) 

-h -h 

J2ki ^1-T]2    (ZJ-Z2) +          l0t (Zj + z2) eJ   "i      i"'1       v   1      *' -r   i-x T «^, (128) 

where M is a normalization constant,   conveniently selected in accord with the 

condition Cp(o) =  1. 

E.     THE CLUTTER SPECTRUM 

This section is  reserved to a further investigation of C^T) as given by 

eq.   (128) and the associated spectral density under various circumstances to 

be specified below. 

The temporal fluctuations associated with the random process  e(r,t) 

can be thought of as caused by the motion of distributed scatterers characterized 

by a random velocity field V^ (r,t).     Thus,   assuming a conservative ensemble 

of scatterers (that is,   assume that no scattering centers disappear from the 

collection) one concludes that the relationship 

(£ - Ji (£■ e(r,t+r) = e(r -     r V (r, s) ds, t) (129) 

t 

is satisfied.    It is further assumed that the processes  e (r) and V (r,t) are 

statistically independent.     This assumption is not totally baseless since the 

fluctuations of e   are primarily a consequence of the spatial distribution of the 

vegetation (and therefore virtually independent of wind conditions) while the 
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nature of V depends greatly upon prevailing winds.    As a result the averaging 

over the processes  e  and V can be carried sequentially.    One has, 

C(R,   r,T)=   <e(r,t)    e(r+R,t+T)> = 

< <  c (r, t)    C (£+R -     f V (r_+R, 

t+T 

C    (R -    f V (r+R,   s) ds) >  v 

s) ds,t) > P> e^  V = 

where the process  e  was presumed statistically homogeneous and stationary. 

(130) 

Let $     denote the (spatial) spectral density corresponding to C   .     It fo 

from eq.   (130) that 

llows 

C(R, r, T ) = 

i 

1         f ^3    .    ,   ,     -jx •   R     ,   +JH  /ds V   (r + R, s)>  v       (131  5     /   d   H$    (H) e  J—     —   <e  J   J            K            JL 
(2n)3   •/ € " 

where V     denotes the velocity component alongjt and the integration rjange 

t^ s£ t+T was  shifted to o^ s£ T   in view of the presumed statistical stationarity 

of the process V(_r, t).     If the process  V^ is also transversely homogeneous,   the 

term <  >v in eq.   (131)    becomes independent of the transversely homogeneous the 

ordinates (but is generally a function of the vertical coordinate).    Separating 

the transverse integration from the longitudinal eq.   (131) may be written in 

the form: 

C(R, r, T) = s^/A .-*•*[*/*, -JH7   Z    *      / 

;„    /ds V   (r+R, s) I 
<eJH/ K >vl (132) 
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Using the notation of eq.   (123), 

-f = 
1 ^     o ,/v 

C(R,r, T) =  C(ft zy z2, T) =   —Uj     / d^Ht   e'J^f  £   $(*t. zr z^ T)      (133) 
(2TT) 

-00 

hence,   (the bracketed term in eq.   (132) is presumed to be independent of p) 

+co I 

/ \ 1       /*J -JH^'zs
x/ x^JH/ds V„(r+Rf s) .. . (üf zrz2'T)= TF 7 d Hz e *,(£fHz)<e  /       H—    >v    (1 

Owing to the near grazing incidence of the wave we know that the major con- 

tributions will come from ranges in which H   < < [H  |  (see for example eq. 

(127) in which k   / |k  | m J.   _2 .    Hence,   H  in the exponent of eq.   (1 34) can 
Z -—L 1 ••  11 

be replaced by H and as a result one has, 

t [Ht,zvz2.r)mi A^.%   <eJ*t/<lsVH(r + R,S)>v (13g) 

where 
+ 00 

$e(Ht,z) =   -L-  JdHz e"JHz *   $e(Ht, Hz)=y"d2^Ce(^,^) e+j*t '   £ (136) 
-00 

The substitution of eq.   (135) into eq.   (128) (with H =2k  ) yields 

CE(T) = M y*d2l /dz2 Y(Zl) Y,;C(z2) fe(2kr^ eJ2kl ^^""y^f  'W 

-h -h 1_T1 

7 

<ej2kl f ds VH(I+R.'S)> 

or upon transforming with respect to T : 

137) 
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+ 00 

*E(UL)) =/dT   e"JUJT   CE(T) = 

M 
0 0 t J 2~/\ 

fdZl     f dz2 Y(Z1)Y*(Z2) *t(2kv% ej2kl    1_T]     Z +j 
2a 

-h -h 1-71 
-2 <V»2> 

<      AT   e"^   + J2kl   fds VH(I+^S) >T (138) 

Eqs.   (137) and (138) still constitute rather complicated forms.     SeveraJ. options 

are open for their further reduction of which two are discussed below. 

1.     First Option 

The averaging process over V can be carried out explicitly under the 

assumption that 

PH(£'T> = f ds V
H<£' s> 

o 

139) 

is a multivariate Gaussian process.     The Gaussian character of p     cannot be 

generally justified unless T   is large compared to the correlation time (Tc)   Of 

V .     For T>>T      p    is Gaussian,   owing to the central limit theorem,   regardless 
M. C H 

of the precise characterization of V   .     In the range T <. T    ,   p    is Gaussian only 
fi> C H 

if V     is.     We have 

<eJ2kl  PH(£'
T

>>V = e"2kl2<pH>V= e"2k2 

T T 

1    f^ifi ds2 <VK(r, s1)VH(r_, s2)>v = 

140) e-4k2    J ds (T-*) Cv (r,3) 
o 

where,   s = s. -s» and Cv(r,s) = <V(r,s,)V   (r,   s9)>.    The process V has been 
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presumed to be transversely homogeneous.     Consequently,   C vis a function 

of z only.        If we also assume that the vertical inhomogeneity affects pri- 

marily the variance of the V fluctuations but not other correlation features 

such as  T   ,   it follows that c 

Cv(r,£) = <V
Z

K(Z)> fy(s) 141) 

where fy(s) denotes the correlation coefficient of the velocity field.     The sub- 

stitution of eqs.   (140) and (141) into (138) yields, 

o o , — 

«E(u)) = M   /  dzj   /  dz2 Y(Z1)Y(Z2) 1,(2^.4) eJ2kl   U^    »+j=£=<*I+82> 

o o 

/dzl/' 
-h _h 

/   dTe-jUÜT"4kl    <VH   (Z2)   > J   d^(T-fi)   fV( 142) 

or alternatively, 

*E(tt>) - M 
/A          .      .    *       v  .  ,01      Av     jZkXl-Tl2 z+  _ISL (z,+z?) 

dz2     /   dz2Y(z1)Y   (z2) *e(2kr z) eJ      1                     > —v 

-h _h 
1 - Tl 

dT    e-JWT-4kf   <V*(Z2)>T      /   d£   $v(5) JT 

sin   2 

J 
143) 

where + 00 

*v<5> = 1 !r/ 
, A r    /A,      -"KS ds fy(s) e  Jb 144) 

represents the spectral-density of the velocity field.    If we further assume 
2 

that <V    >  does not vary (or varies  slowly) over the contributing range of z, 
H 
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one observes that the bracketed terms in eqs.   (142) or (143) are independent 

of z,  and z?.     These terms,   which may be taken out of the respective integrals, 

completely determine the normalized field's spectrum: 

A A 
$E(OJ) = M 

T 
-)-oo /* 

f dT   e"jU)T   e"4kl2 <VH >J   d^ (T"^ fV<*) = 

5T    V2 

A 
M y*dT •-■*»' e"416!2 <VS > T2/d5  *v<5>(   Sf2    j 

with M selected so that duu  $E(lD) =  1. 

(145) 

The asymptotic behavior of $F(uü) for large and small uu  (small and large 

T,   respectively)  can be readily determined.     These asymptotic observations 

are of special significance since they are independent of the detailed fo rm of 

A 
fv(s). 

(a)     The limit iw - o (T>>T   ). 

A   . 
The major contributions to the ds integral in the exponential 

of eq.   (145) comes from the range s <.   T   .   hence 

jd$(T-S)iy(i)»    \r\   Ji ds   fy(s)   =    | T |      Tc 

+ oo 

A A 
lim $E(uu) = M 

u)-o 

it follows that 

2      ~2 
*E(0) 

fdT   e"^T   e"4kl   <VH  >Tc   H =      1+(J!L: 
J wl 

146) 

(147) 

2 <v2 
2k,    <V„ >  TC    §E(0) =  1,   §E(0) = 2/uJj (148) 

51 



and the defining identities 
00 

TC =     I dsiy(s) = TT  §v(0) (149) 

U).  = 4k,2 <V2 >  T (150) 
1 1 t\ C 

have been introduced. 

Comment: The bound character of the vegetation's scattering centers 

(i. e. , the finite variance of their displacement in the limit T -* ®) implies 

a DC return which is totally ignored in the above sequence. 

(b)    The limit uu   - »  (T   «T   ). 

In the range 0 <,   s <<  T    the correlation function fv(s)  stays virtually constant: 

£v(8) * fy(0) = 1 (151) 

hence, 

+5° o       Av /„,.,    - W, T 

lim $F(U)) = M    I   dr   e  J e        1 H E  ~—   e 2 

U)-- .„ (152) 

The transition curve connecting the asymptotic segments described by 

eqs.   (147) and (152) is complicated by its dependence on the detailed form 

of fv(T).     fv(T),    while a relatively simple characterization of the coupling 

between the mechanical motion of the forest scatterers and the turbulent 

wind is an unknown.     Little reliable data exists which may allow its determina- 

tion.     It must be either assumed or derived on the basis of some simple (and 

probably over simplified) models.     For example,   one may regard the wind- 

forest interaction as that between a harmonic oscillator and an isotropic and 

homogeneous turbulent wind (M.   Labitt and R.   Yates,   private communication). 
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Alternatively,   one can assume that regardless of the driving (wind) forces 

the resulting motion can be approximately viewed as locally harmonic over 

the relevant time interval.     This option is discussed in the second part 

this section.      The form 

f  (T) = f ,(T)    f  (T) v do 

of 

(153) 

where f ,(T ) and f  (T) denote decaying and periodic functions respectively,   is 

suggestive (although not rigorously defensible).    As an example,  selected for 

its relative simplicity,   one can take the form 

IT I 
fv(T) = e COS   Q  T 

which permits the explicit evaluation of the integral: 

2 

(154) 

/ 
T - s) fy(s) ds  = 

o [-*- - cos  (3+ e -|T|/T, o cos(ß+Q |T I ) 

(lft) 

where 

cos  ß  = 

sin ß   = 

-2   2 
1-Q  T*  o 

1 + Q2 T2 

o 

2Q T 

1+Q
2
T

2 

o 

o <   ß = cos -1 
1-Q     T 

o     ^ 

l+n2T o 

(156) 

(157) 

T     is defined in eq.   (149) and is related to Q and to T    via 

T    = c ,   ^2   2 
1 + Q    T o 

158) 

The substitution of eq.   (155) into eq.   (145) with M given by eq.   (148) results in: 
^Although TC as given by eq.   (158) should not be strictly interpreted as a meas 
ure of the correlation time of the velocity field of eq.   (154),   it is convenient 
to preserve the definition given by eq.   (149). 
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+00 

1E(w) = 2kl
2   ^E(0)<  V2>  v     /"dr  a"*" 

-00 

e-4k1
2<V^ > T0 TC  [   T0      - cos  e+ e"lT l/Tocos (ß+n |T |) J (i59) 

One immediate conclusion stemming from eq.   (159) is that even for the simple 

choice (154) no closed form expression for $F(uu) is available.    The Fourier 

transform (159) was evaluated on a computer and examples of these results 

are shown in Fig.   10.    The theoretical result given by the solid curve 

(QT     = 5,  o)1 T0 = 0. 5) is very similar to measured UHF clutter spectra with 

moderate winds. 

2.    An Alternative Option 

The forthcoming analysis  starts once again with eq.   (138).    However, 

instead of presuming the process V   (r_, t) to be normal we now postulate a 

locally harmonic temporal dependence: 

V   (r,t) = V    (r) cos [fl (r)t+cp(r) ] (160) 
% *~ in — 

where V    (r),  Q(r) and cp(r) are random functions of r but are time independent. 
m — — — — 

The relation (160) is not expected to constitute a valid description over pro- 

longed periods.    The resulting spectral predictions,  therefore,  are expected 

to be inaccurate near DC.    In this respect,  the model to be pursued in this 

section can be regarded as complementary to that leading to eq.   (147).    It 

follows trivially that, 

T 

V   (r, s) ds =  p    (r)  [sin n T + cp)  - sincp] (161) H m — 

o 

T 

/ 

where V      and p      = V    /Q   represent local maxima of V   and the displacement, 
m rm m r K 

ak 
Vanishing of the field as T-* »   implies unbound scatterers.    We are aware 

that the scatterers are indeed bounded but here have chosen to disregard this 

feature since the loss of a measure of the stationary backscatter (impulse at 

uu = o) is not a major penalty. 
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Fig.   10.      Clutter spectral density. 
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respectively,    If we assume  p    ,   Q  and cp to be statistically independent (not 

entirely unreasonable since Q  and cp are expected to be essentially independ- 

ent of wind conditions,   while a strong wind dependence is anticipated for 

p    ),   one obtains rm 

+ 00 r 

,).</"dT e-j^ + J2ki y IE(UI dS   VH(-'S)> 

+ 00 

••51 /   v     ■ I   j        -JUU T   + j2ki   p„(r)  sin (QT+ cp) .e-j2k1   Pm(£_) sin cp   I   dT   e  J J     1  Mm*_' *♦" > 
Pm 
cp 
0 

(162) 

where Irpdl)) is defined by the expression to its  right,   and<^ ^ p 
cpm 

n 

indicates sequential averaging over the distributions of p    ,   cp,   and Q  (the 

actual averaging sequence is arbitrary).     The substitution of the expansion 

+ 00 
eJ2klPmsin(QT+cp)     =   £   Jn(Zki   pm)    eJn(QT+cp) (l63) 

n= -oo 

into eq.   (162) and carrying out the T - integration results in 

oo 

UU)) = 2TT    <e"J2kl  Pmsin£P£    Jn(2kl  pm)eJnCP  6(uü-nn)> (164) 

cpm 

Q 

The averaging over cp  is readily performed if we presume a uniform dis- 

tribution within the interval - TT  <cp<TT: 

Ü 

<e-J2kl  Pm
sincP + JncP>   =1       Le-J2klpmsintP+Jn(P,J   (2k, p    ) 

Cp       2TT     /     ^ nv      1 rm' 

"" (165) 

56 



Eq.   (164) is reduced to 

IE(U» = 2n   £     <Jn  (2kl  pm) >        <6 

n= -» 
pm  ' o(LÜ-nCl)>Q   = 

2 2 
2TT<JQ   (2kx   pm)>        6(UU) + 2TT   £    <Jn 

(2klpm) >      < Mw-nQ ) + 6(uu+nQ>0 (166) 
m n=l m 

Let P(Q ) denote the density function specifying the 0  distribution (its general 

properties are discussed below).     The Q  averaging leads to 

IE(U)) = 2n<Jo
2 (2klPm)> Mm)    + 

m 

2TT£ n^,        n    <Jn   (2kl   Pm»>p        [p (JL ) + p (. JL ) ] 
n=l Km   L     v   n n      J (167) 

It can be immediately observed that 1^(11)) is symmetric about u)=o,   regardless 

of the precise nature of P(Q). 

The task of averaging over  p      is more difficult.    However,   before turn- 

ing to it we discuss some of the properties of eq.   (167) which are relatively 
2 

insensitive to the term <J     (2k,   p    )>   n n 1   Mm'      Pm 

P(fi) is not known.    However,   since it essentially describes the distribu- 

tion of resonance frequencies (positive by definition) of the ensemble of forest 

constituents it must vanish in the limits Q  -» »   and Cl  £  o.     It must contain 

at least one maximal value; for simplicity let us assume that P(Q) possesses 

a single maximum (say at Q  =0  ). 

The physical interpretation of eq.   (167) is straightforward.     It contains 

two distinct parts.     The first (in our case proportional to  6(u))) represents 

57 



that part of the received power which did not undergo spectral modifications. 

Its spectral content is identical to that of the transmitted signal,   although 

it experiences a power reduction (represented by the coefficient <J   (2k, p    )>) 

as the power conversion process into other spectral constituents (represented 

by the second term in eq.   (l67))becomes more efficient.     The efficiency of 

this conversion process depends primarily on the (random) parameter k, o 

Under no wind conditions (k. p      = 0 )    all the power is contained in the first 1   m 

(DC) term.     The second term vanishes.    As k. p      increases (with the rising 

magnitude of wind velocity),   the DC term decreases in magnitude,   the second 

term increases,   consistently with the anticipated conservation of energy. 

The singular character,   of the DC term,   stems directly from the presumed 

monochromatic nature of the transmitted signal.     Eq.   (167) stays valid if 

the actual,   distributed spectrum of the transmitted signal replaces the 6 - 

function,   provided that it is sharply peaked (on the scale of Q   ). 

The spectral-density $„(0)) can be obtained now by the substitution of 

eq. (1 67) into eq. (138). However, because of the complexity of the result 

we presently assume p to be statistically homogeneous in all directions. 

Consequently,   Ip(u)) is independent of z    and z? and represents by itself the 

desired spectral density. 

2 We now turn to the estimate of the coefficients <J     (2k. p     )>        in n   v      lrm    p rm 
the limits of weak (k, p      << 1) and strong (k, p      > > 1) winds. \   i r-m 

& v   1 Km 

(a)     The limiting case k    p      <<1. 

The Bessel functions may be replaced by the term in the corre- 

sponding power series expansion: 
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<Jn(2klpm)>p      * 

<(k.p    )2n> 
1   m pm 

(n!)2 
168) 

The series is a rapidly convergent one and for 

<(k.p    )2>       >> ^ <(k. p    )4> v   lKm       p 8 1   m'      p 

it is properly represented by its first term: 

(169) 

I   (u>) « I^o)(ttt) + 2n<(k    pm)2 >        [Puu) + P(-u>)] 
^m 

170) 

(o) where I*   ' represents IT_,(uu) measured under no wind conditions (p      £  o). 

In eq.   (167),   I*o) (u)) is identified as 2TT 6 (ID) . 

The presumption of validity of the above model indicates the feasibility 

of the experimental determination of P(o)) from the measurement of Ip(uu) 

under weak wind conditions.     From eq.   (170) one has 

P(u>) «C [l„(u>)  - li0) (UJ)]U (U)) Ev (171) 

where C is selected consistently with the requirement:   C I  [IJOJ) - iL   (uu)]du)=l 

o 
The experimental determination of P(O)) via eq.   (171) is significant owing to 

the anticipated insensitivity of P(u>) to varying wind conditions.     The deter- 

mined P(uu) may be utilized in eq.   (167) for relatively arbitrary winds, 

(b)    The limiting case k, p      >>1.    An exact evaluation of 

<   J     (2k.p    )> n n Imp 
m 

It  will be found advantageous to represent the Bessel functions in eq 

by their integral representation.     We have, 

. (167) 
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<J2(2k, p    ) > =   i   <  [(H(1) (2k, p    )+H(2)(2k, p    )]2> 
n   v      1 Km       p 4 L     n     x      1 rm' n     v      1 Hm   J p 

2 2 
|<H(1)    (2k, p    ) + H(2)    (2k, p     )+2H(1)(2k, p    ) H(2) (2k,   p    )> (172) 
4        n        v      1 Hm' n        v      1 Hm' n    v     1 pm       n     v      1  Km     p pm 

where the Hankel function is defined via 

(J) 
H 2   (2k,   p    ) =   I   ■ /V->2kl pm sin * + JncP dcp (173) 

n 1   Km TT     I ^ 

m 

Cl 
2 

and the paths C,  are illustrated in Fig.   11.     For simplicity we assume p 

2 . .2    1/2 
to be normally distributed with a mean p      and a variance a  = <(p    -p    )   > 7 rm p        v   m     m 

If we further define the parameters: 

?              ???l/2                       2k. p 
L =  [ (2kj   Pm)     + (2k* a* T]        ,   sin Qf=   L-BL,   o <   a  <-y (174) 

we find, 
1, 2 

H2       (2k, p    )>      =-V    /"dcp,   /acp,    eJn(cp1 + cp2)e-LQ(CPl,   cp2) ?5) 
n imp ^     / 1 /       2 rm      TT      J J 

< 
n 'imp £ Km     TT 

Cl 
2 

and 

<H(1) (2k, p    ) H(2) (2k, p    ) > 
n     x      1   m       n     v      1 rm      p Km 

V   Acp1    /"dcp2eJn(cPl + CP2)-LQ(cp1,cp2) 

Cx        C2 (176) 

where 

2 
Q(cp, , Cp?) = j sin Qi  (sin cp    + sin cp?) + cos a   (sincp    + sin cp~) (177) 

Eqs.   (175) and (176) are now evaluated asymptotically (with L taken to be 

60 



4> . 4>      PLANE 

Fig.   11.    The path defining H   (y). 

61 



the large parameter) via the method of steepest descent.     The saddle points 

cp      and cp      defined by the equations 
IS C.S 

ÖQ(cpls,cp2s) 
=   0   = 

dQ(cpls, cp2s) 

;2s 
T7 TT 

^cpls a cp 

are readily found to be situated at either +-^-(    on C      ) or at - y- (along C.) 

Eq.   (175) yields the saddle-point contribution. 

178) 

(V 
<Hn       (2klPm

)>p m 

jn(cp     +cp      ) 
_-LQ(cpls, cp2s) + 0 (   1    j 

L r—2 2"" 1 ä Q    d  Q 
2 2 

m 

^2=^3 

7 Tjnir- L (4 cos cv  ^  2j sin cv ) 
C* TT C 

L ± j sin a - 4 cos a 

where the (± ) corresponds to ( ? ).    Similarly, 

+ o   (-V) 179) 

< H(1)(2kl p    )H(2) (2k,   p    ) > ~-r-^— n 1 rnV     n 1   Km      p L sin a Km 
+   O 

Hence,   from eq.   (172) 

<  J    (2k, p    )> n v      1 Km'    p 
m 

L sin   cv 

(180) 

 1  
r   .   2    ^ ., 2     T72 [sin    a+ 16 cos   a J 

-4L cos cv ,~T o v e cos (ZL sin a- nn + p ) 

A substantial simplification occurs if 

2      2 
4L cos CY = 8k.    a     >>  1 

1       P 

,   ß = tan~     [   —   tan cv ] 181) 

182) 
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The last term may simply be omitted owing to the exponential decay resulting 

in 

? TT 
(183) < J2 (2k.  p    )>       ~       91 

V
k n  v      1  Km'    p 2k.   P 

m 1 m 

which is independent of n.    Hence,   in the limit k, a   >>   1 the normalize 
1    p 

spectrum (167) now reduces to 

TT 
IE(uu) - 
^ k.   p 1   Km f n=l 

UU 
+ P(-r-) ] n 184) 

The asymptotic expansions  (179)  (180) presumed not only the largeness of L 

with respect to unity but also with respect to n.    In the case where the series 

(167) does not converge at a sufficiently rapid rate the results  (179) (180) must 

be reconsidered.     The asymptotic analysis must allow for large values of n. 

The saddle-point condition and the corresponding contributions are modified 

as indicated next.     Let, 

A 2 
Q =  jn (cp,  + cp2)  - L [j sin <y  (sin cp. + sin cp~) + cos a(sincp   + sincp~)   ] 

hence, 

a8 v =   jn - L [ j sin a  cos cp   + 2 cos a (sin cp   + sin cp2) cos cp   ] 

(185) 

(186) 

and 

a2 3 
d cp 

L_=    - L [ -j sin a sin cp. + 2 cos a (cos   cp   - sin cp. - sin cp? sin cp, ) ]    (187) 

1 2 
2 

The saddle-point conditions are defined by 

a<5 
^1      '»is.   '2s ^2    lcPls,   ^ 

= 0 188) 
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We specifically look for solutions of eqs.   (188) subject to the constraint 

cpls  =  -cp2s (189) 

which selects the unique combination of cp,     and cp7     giving rise to contributions 

which are not exponentially small.    Such a solution indeed exists and is given 

(via eq.   (186)) by 

jn - jL sin a cos cp     =0 
Is 

190) 

or 

n . J *      / n        v 2 
cos cp,      =     T :  ,     sin cp, = ±        1 - (-= : ) us L sin a us L sin a 

2 2 

191) 

The substitution of eq.   (191) into (187) results in, 

a2Q 

dcpj 
= -L 

^is = -*2s 

[/ n^~ n2 1 
T j sin a * 1- —2^—?—    + 2 cos a —2~~~~2— 

L   sin    a L   sin  cv 
192) 

and 

a Q        a Q 

dcp o*cp2 

4k     p -n    +n 1     m 

r • 2 /, I  sin    a [ 1 T 2        .2 
= L        sin    CM 1 - n 1  ,   A 2 + 4 cos   a 

T2.2 
L   sin   <y 

'is = "»Zs 

4 

4.4 
L   sin   a 

(193) 

Therefore, 

<J     (2k.   p    )> n   v      1   rm     p 
TT 

m /    ..  2   - 2       2       4 / CTp V 
V   4kl    Pm   ~n    +n    (j6-) 

m' 

194) 
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and substitution into eq.   (167) results in 

iEu>~ TT 

1  ^m 

6(a)) + 2TT     £ 
P(i, + P(-S) 

n=l / ..  2 - 2       2      4/   ap V nV4ki pm-n   +n ("l^J 
195) 

An exact evaluation of < J    (2k.   p     )>        is possible for a presume n 1  Km     p r ^ 

Rayleigh distributed variable p     .     One has 

<J     (2k,   p     )> 
n   v      1  Km'   p 

m 

00 

/ 
dp        P(p     )   J     (2k.   p     ) Km        Km       n   x      1  Km 

A 
P 

CO 

m 
2 £  2\ ö~4kl    P, dp      p      J     (2k.  p     ) e      ,A  2   = I   (4k,   p     ) e  "1 ym    m    n 1  Km 2 p n        1   Km 

(196) 

m 
m 

where n      denotes the value of D      at the peak of P(o     ). 

Hence,   via eq.   (167) 

2A 2 2A 2 
IE(»)»2Tr I0(4k^m

2e-4kl  ^   6(.) + 2TT £ 5 V^ ^f) e"4kl pm[P( ^ + P(- j?) ] 

(197) 
which reduces to the results given in eqs.   (170) and (184) in the respective 

asymptotic limits. 

The clutter spectrum given by eq.   (197) again indicates a DC component 

at a) = o plus continuous AC spectrum with the appropriate interchange between 
2      2 

these components to conserve energy as the factor 4k,    p       is varied.    I^di)) 

as given by eq.   (197) is normalized for unit total clutter power.    Hejnce, 

-ho 

P      = P + P 
T DC AC 2n   J IE(u0 duo =  1 (198) 

The DC clutter power is 
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PDC^OKO6'4"1^ <199> 

-   I    (4k2«   2),-4kl2Pi2 

Hence,  the AC clutter power is given by 

PAC = PT " PDC = X -  lo (4kl2 *m > « ~™!   "m (2°0) 

Note that this is true,   independent of the specific form of the density function 

of self-resonant frequencies P(Q).     Figure  12 is a plot of the ratio of AC clutter 

power to DC clutter power as a function of the parameter f)     /\.    For large 

displacements,  this ratio is proportional to p     /\. 

Figure 13 depicts a measured clutter spectrum at UHF (\  = 0.69 m) under 

low wind conditions.    All of the measured spectra were characterized by a 

resonant peak at approximately 0.4 Hz.    The linear slope (db vs.   log fre- 

quency) of the observed low wind spectra above this peak suggests a power 

law representation for P(0) of the form 

a (Q /fl   )p 

P(0)   =    —- (201) 
1 + b (ft/Qo)4 

(see eq.   (171)) .    A good fit to the tail of the low wind spectrum was obtained 

with parameters chosen such that q - p te 5.7.    Alternative choices for P(Q), 

such as a Rayleigh distribution or the Maxwell distribution included in Fig. 

10,   can not accurately produce the observed low wind clutter spectra. 

The power law distribution which matched the low wind UHF spectra was 

then used in eq.   (197) to predict clutter spectra at both UHF and L-band 

carrier frequencies for higher wind conditions.    These results are illustrated 

by Fig.   14.    The experimental data at the two frequencies was obtained simul- 

taneously from a common range cell.    It is seen that the power law distribution 
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Fig.   12.    AC-to-DC clutter ratio for Rayleigh distributed displacements. 
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Fig.   13.    Low wind clutter spectra.     Deflections Rayleigh distributed. 
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Fig.   14.    Moderate wind clutter spectra.     Deflections Rayleigh distributed. 
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with a deflection parameter of $     = 3.7 cm which quite accurately matches the 

observed L-band spectrum also predicts reasonably well the observed UHF 

spectrum. 

The Maxwell distribution of P(Q), which was seen to be a poor choice under 

low wind conditions, yields much more reasonable results with stronger winds. 

This suggests that the higher wind spectra are less sensitive to the distribution 

of self-resonant frequencies of the scatterers. 

It should be observed that the distribution of p characterized by the para- 

meter p may depend upon the frequency of the incident radiation. As the fre- 

quency increases, smaller-scale scattering centers start to effectively partici- 

pate in the scattering process. It is anticipated that these smaller constituents 

will move with larger amplitudes and thus thend to increase p . The trend is 

reversed as the frequency decreases. While the qualitative observation is 

simple,   no satisfactory quantitative procedure has been established. 
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APPENDIX 

The objective of this Appendix is to prove the validity of the relation: 

Var P    =<[P    -<P>]2=<P>2 

r L     r r r (Ai; 

under the constraints of single-scatter theory and the presumed largeness 

(compared to the correlation length) of the scattering volume. 

Let 

Ex = Re [ A  Egi ],   E2 = Im [ A   E^ ] (A2) 

The largeness of AV. in eq.   (118) assures (via the central limit theorem) the 

normal character of AE   .  (which is therefore completely defined by its two- 

point correlations).    Upon forming the expression <A E   .  •    A E   . >  (via eq. 

(118)),   transforming the resulting double integral (say over r,  and r?) into 

the center of mass (R = y   (_r.  + r_?)) and relative (r_ = r,   - r_?) coordinate 

systems and further separating the horizontal coordinates from the vertical, 

one obtains: 

<A   E  .  (r, t) •  A   E   . (r', t+T )>  = —si   — —si   — 

4     2    2,2 
o  ^o jkj  2 -J2k1(p0+p^)F  (cp.) 

2^   ,2 z   +z 

2  /-n2    i*2  n8 
TT       (Tl     -1)        Po 

/o 

d3$ C(|,T)   fdZ Y(z1) Y(z2) e^l^l-f     + 2«        ](zl+z^) 

A V. 

yv p ej
4ki poi • i 

AS: 

(A3) 

It is the bracketed term in eq. (A3) which is of special interest,   since 

/   d2 -p   eJ4kl £oi •  I =  (2n)2 6 (4ki ^o.) 
lim AS. - °=    ASi 

(A4) 
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Hence,   the largeness of AS. is measured on the scale of the wavelength of the 

incident radiation (rather than the correlation distance characterizing  e(r,t). 

It follows that, 

<AE   . (r,t) .    A£   .  (r',t+T)> = 0 (A5) s 1 s 1 

or 

<£1  (r,t) •     Ex (r'f t+r) >  =   <  E2 (r, t) •     E_z (r', t+T)> (A6) 

and 

<E1  (r, t) •     E2 (r', t+r)>= -<  E^r',   t+T) •     E2 (r, t)> (A7) 

Although one can continue with the treatment of the two-point statistics, 

we restrict ourselves to the discussion of the one point statistics relevant to 

the proof of eq.   (Al).     With r_ = r_'   and T   = 0 in eqs.   (6, 7) it follows that: 

<EX
2>  =    <E2

2>  =    o  * ,    <Ej  •     E2>= 0 (A8) 

Hence,   the joint distribution is  given by 
2 2 

El   + E2 

P(E1>E2)=    ^—      e 2o| (A9) 
2n aE 

Or in terms of the amplitude and phase,   with 

one obtains 

A =  [E2 +  E2]
1/2,     cp  = tan-1   -gi (A10) 

A2 

P(A, cp) 3      f^-      e"    ?   nZ     U(A) (All) 
2n   aE

2 ÜE 
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For the Rayleigh distribution (All) it follows: 

2 2 4 4 
<A   >  =2.0^,   <A   >  = So* 

Hence (with S denoting the Poynting vector), 

Var-S = <[S - <S>]2>  =1  —   < [ A2 - < A2> 1 Z>. 
4    ^o 

(A12) 

°     [<A4>  _<A2>2]=-iL   a4   = <S>< 
•i       H, M,o       E 

where eq.   (A12) was utilized.     Eq.   (Al)  results. 

(A13) 
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